首页> 外文OA文献 >What is the trigger mechanism for the reversal of electron flow in oxygen-tolerant [NiFe] hydrogenases?
【2h】

What is the trigger mechanism for the reversal of electron flow in oxygen-tolerant [NiFe] hydrogenases?

机译:耐氧[NiFe]氢化酶中电子流逆转的触发机制是什么?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© The Royal Society of Chemistry 2015. The [NiFe] hydrogenases use an electron transfer relay of three FeS clusters - proximal, medial and distal - to release the electrons from the principal reaction, H 2 → 2H + + 2e - , that occurs at the Ni-Fe catalytic site. This site is normally inactivated by O 2 , but the subclass of O 2 -tolerant [NiFe] hydrogenases are able to counter this inactivation through the agency of an unusual and unprecedented proximal cluster, with composition [Fe 4 S 3 (S cys ) 6 ], that is able to transfer two electrons back to the Ni-Fe site and effect crucial reduction of O 2 -derived species and thereby reactivate the Ni-Fe site. This proximal cluster gates both the direction and the number of electrons flowing through it, and can reverse the normal flow during O 2 attack. The unusual structures and redox potentials of the proximal cluster are known: a structural change in the proximal cluster causes changes in its electron-transfer potentials. Using protein structure analysis and density functional simulations, this paper identifies a closed protonic system comprising the proximal cluster, some contiguous residues, and a proton reservoir, and proposes that it is activated by O 2 -induced conformational change at the Ni-Fe site. This change is linked to a key histidine residue which then causes protonation of the proximal cluster, and migration of this proton to a key μ 3 -S atom. The resulting SH group causes the required structural change at the proximal cluster, modifying its redox potentials, and leads to the reversed electron flow back to the Ni-Fe site. This cycle is reversible, and the protons involved are independent of those used or produced in reactions at the active site. Existing experimental support for this model is cited, and new testing experiments are suggested.
机译:©皇家化学学会,2015年。[NiFe]氢化酶使用三个FeS簇的电子转移中继-近端,中间和远端-释放主要反应中的电子H 2→2H + + 2e- Ni-Fe催化位。该位点通常会被O 2灭活,但是耐O 2的[NiFe]氢化酶的亚类能够通过异常和前所未有的近端簇(组成[Fe 4 S 3(S cys)6) ,其能够将两个电子转移回Ni-Fe位并实现O 2衍生物种的关键还原,从而重新激活Ni-Fe位。这个近端簇既控制了流经它的电子的方向,又限制了流经它的电子数量,并且可以在O 2攻击期间反转正常流动。近端簇的异常结构和氧化还原电势是已知的:近端簇的结构变化导致其电子转移势的变化。使用蛋白质结构分析和密度泛函模拟,本文确定了一个封闭的质子系统,该系统包括近端簇,一些连续的残基和一个质子储库,并提出了由O 2诱导的Ni-Fe位点构象变化激活它的方法。该变化与关键的组氨酸残基相关,该残基随后导致近端簇的质子化,并使该质子迁移至关键的μ3 -S原子。所得的SH基团在近端簇处引起所需的结构变化,改变了其氧化还原电位,并导致反向电子流回到Ni-Fe部位。该循环是可逆的,所涉及的质子与活性位点反应中使用或产生的质子无关。引用了对该模型的现有实验支持,并提出了新的测试实验。

著录项

  • 作者

    Dance, I;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号